« Вредно ли МРТ для животного?

МР-томография


Недавно магнитный резонанс как диагностический метод получил более широкое применение в ветеринарной практике (Taga A, Taura Y – 1998; Sether LA, Nguyen C, Yu VM – 1990; De Haan JJ, Shelton SB, Ackerman N – 1993; Stewart WA, Parent JML – 1992; Shores A – 1993). Sether LA с соавторами (Nguyen C, Yu VM) считают, что магнитно-резонансная томография (МРТ) является лучшим доступным методом для ранней диагностики дисковой дегенерации у собак. Этот метод также обеспечивает четкое изображение мягких тканей и позволяет
увидеть  точное различие анатомических и патологических изменений головного и спинного мозга (De Haan JJ, Shelton SB, Ackerman N – 1993; Stewart WA, Parent JML – 1992; Sande RD – 1992; Coates JR – 2000).


При проведении МРТ не происходит ухудшения состояния пациента, кроме того,  можно четко распознать тип распределения вещества диска по эпидуральному пространству  (Olby NJ, Munana KR,2000. Sether LA, Nguyen C 1900.), а также позволяет распознать другие патологические изменения, связанные с позвоночным столбом (Olby NJ, Munana KR,2000). Даже небольшой рассеянный диск хорошо виден при проведении МРТ.


Очевидно явное превосходство МРТ и в постановке диагноза у людей (Czervionke LF, Haughton VM – 2002; Cohen WA, Giauque AP – 2003).  Длительное сдавливание спинного мозга приводит к глиозу и миеломаляции, эти изменения можно обнаружить в центральной области спинного мозга  как увеличение интенсивности сигнала  в


Т2 - релаксации. (Omer Besalti,  Ahmet Ozak, Zeynep Pekcan,2005).


Дифференциальная диагностика отека от миеломаляции при проведении МРТ затруднительна.


Пациенты, у которых имеется увеличение интенсивности сигнала, имеют худший прогноз даже после проведенной операции, что характеризует метод МРТ как хороший способ составить правильный прогноз лечения. (Omer Besalti, Ahmet Ozak, Zeynep Pekcan – 2005)


В медицине при магнитно-резонансной томографии было установлено, что величина грыжевого выпячивания не всегда соответствует выраженности клинических проявлений компрессии нервных корешков (Мамаев В.В., Маняхина И.В., Мусорин О.Н. – 1997; Черненко О.А., Ахадов Т.А., Яхно Н.Н. – 1996). В связи с этим методы компьютерной томографии (КТ), безусловно, информативные и полезные для практического врача в диагностике вертеброгенной патологии позвоночника (Скоромец А.А., Скоромец Т.А., Шумилина А.П. – 1997, Chang Y
– 2007), не являются и не могут быть определяющими при диагностике у конкретного больного.


МРТ-диагностика


Долгий путь пришлось пройти теоретической разработке, прежде чем она нашла применение в практической медицине. В 1946 г. группы исследователей в Стэнфордском и Гарвардском университетах независимо друг от друга открыли явление, которое было названо ядерно-магнитным резонансом (ЯМР). Суть его состояла в том, что ядра некоторых атомов, находясь в магнитном поле, под действием внешнего электромагнитного поля способны поглощать энергию, а затем испускать ее в виде радиосигнала. За это открытие Ф. Блоч и Е. Персель
в 1952 г. были удостоены Нобелевской премии. Новый феномен вскоре научились использовать для спектрального анализа биологических структур (ЯМР-спектроскопия). В 1973 г., используя явление ЯМР, П. Лутебур впервые получил изображение двух наполненных водой капилляров; именно с этого началось развитие ЯМР-томографии.  Первые  ЯМР-томограммы внутренних органов живого человека были продемонстрированы в 1982 г. на Международном конгрессе радиологов в Париже.


Физической основой МРТ является магнитный резонанс. Если систему, находящуюся в постоянном магнитном поле, облучить внешним переменным электромагнитным полем, частота которого точно равна частоте перехода между энергетическими уровнями ядер атомов, то ядра начнут переходить в вышележащие по энергии квантовые состояния. Иначе говоря, наблюдается избирательное (резонансное) поглощение энергии электромагнитного поля. При прекращении воздействия переменного электромагнитного поля возникает резонансное выделение
энергии. Магнитно-резонансное исследование опирается на способность ядер некоторых атомов вести себя как магнитные диполи. Данным свойством обладают ядра, которые содержат нечетное число нуклонов, в частности H, С, F и P. Эти ядра отличаются ненулевым спином и соответствующим ему магнитным моментом.


Современные МР-томографы «настроены» на ядра водорода, то есть на протоны (ядро водорода состоит из одного протона). Протон находится в постоянном вращении. Следовательно, вокруг него тоже существует магнитное поле, которое имеет магнитный момент или спин. При помещении вращающегося протона в магнитное поле возникает прецессирование протона (нечто вроде вращения волчка) вокруг оси, направленной вдоль силовых линий приложенного магнитного поля. Частота прецессирования, называемая также резонансной
частотой, зависит от силы статического магнитного поля. Например, в магнитном поле напряженностью 1 Тл (тесла) резонансная частота протона равна 42,57 МГц. Расположение прецессирующего протона в магнитном поле может быть двояким: по направлению поля и против него. В последнем случае протон обладает большей энергией, чем в первом. Протон может менять свое положение: из ориентации магнитного момента по полю переходить в ориентацию против поля, то есть с нижнего энергетического уровня – на более высокий. Обычно
дополнительное радиочастотное поле прикладывается в виде импульса, причем в двух вариантах: более короткого, который поворачивает протон на 90°, и более продолжительного, поворачивающего протон на 180°. Когда радиочастотный импульс заканчивается, протон возвращается в исходное положение (наступает его релаксация), что сопровождается излучением порции энергии. Время релаксации протона строго постоянно. При этом различают два времени релаксации: Т1 — время релаксации после 180° радиочастотного импульса
и Т2 — время релаксации после 90° радиочастотного импульса. Как правило, показатель Т1 больше Т2. С помощью специальных приборов можно зарегистрировать сигналы (резонансное излучение) от релаксирующих протонов и на их анализе составить представление об исследуемом объекте. Магнитно-резонансными характеристиками объекта служат 3 параметра: плотность протонов, T1 и Т2. T1 называют спин-решетчатой, или продольной, релаксацией, а Т2 — спин-спиновой, или поперечной, релаксацией. . Амплитуда зарегистрированного
сигнала характеризует плотность протонов, или, что то же самое, концентрацию элемента в исследуемой среде. Что же касается показателей времени Т1 и Т2, то они зависят от многих факторов (молекулярной структуры вещества, температуры, вязкости и др.). Следует дать два пояснения. Несмотря на то, что метод основан на явлении ЯМР, его называют магнитно-резонансным (МР), опуская первую часть слова – «ядерно». Это сделано для того, чтобы у пользователей не возникало мысли о радиоактивности, связанной с распадом
ядер атомов. И второе обстоятельство: МР-томографы не случайно «настроены» именно на протоны, то есть на ядра водорода. Этого элемента в тканях очень много, а его ядра обладают наибольшим магнитным моментом среди всех атомных ядер, что обусловливает достаточно высокий уровень МР-сигнала.


Магнитно-резонансная томография


Магнитно-резонансная томография — один из вариантов магнитно-резонансной интроскопии. МРТ позволяет получать изображение любых слоев тела животного. Большинство современных МР-томографов «настроено» на регистрацию радиосигналов ядер водорода, находящихся в тканевой жидкости или жировой ткани. Поэтому МР-томограмма представляет собой картину пространственного магнитного поля. Магнит полый, в нем имеется туннель, в котором располагается пациент. Стол для пациента имеет автоматическую систему управления
движением в продольном и вертикальном направлении. Для радиоволнового возбуждения ядер водорода и наведения эффекта спина внутри основного магнита дополнительно устанавливают высокочастотную катушку, которая одновременно является и приемником сигнала релаксации. С помощью специальных катушек накладывают дополнительное магнитное поле, которое служит для кодирования МР-сигналов от пациента. При воздействии радиочастотных импульсов на прецессирующие в магнитном поле протоны происходит их резонансное возбуждение
и поглощение энергии. При этом резонансная частота пропорциональна силе приложенного статического поля. После окончания импульса совершается релаксация протонов: они возвращаются в исходное положение, что сопровождается выделением энергии в виде МР-сигнала. Этот сигнал подается на компьютер для анализа. МР-установки включают в себя мощные высокопроизводительные компьютеры.


В современных системах МР-томографов для создания постоянного магнитного поля применяют либо резистивные магниты больших размеров, либо сверхпроводящие магниты. Резистивные магниты дают сравнительно невысокую напряженность магнитного поля — около 0,2-0,3 Тл. Установки с такими магнитами имеют небольшие размеры, могут быть размещены в таком же помещении, как рентгенологический кабинет, удобны в эксплуатации. Для МР-спектроскопии они непригодны.


Сверхпроводящие магниты обеспечивают напряженность магнитного поля до 30 Тл и более. Однако они требуют глубокого охлаждения — до —269°, что достигается помещением магнита в камеру с жидким гелием. Та, в свою очередь, находится в камере с жидким азотом, температура которого —196°, и затем в наружной вакуумной камере. К размещению такого МР-томографа в лечебном учреждении предъявляются очень строгие требования. Необходимы отдельные помещения, тщательно экранированные от внешних магнитных и радиочастотных
полей. Но последние достижения физики в области сверхпроводящих материалов позволят добиться значительного прогресса в конструировании МР-томографов с высокой напряженностью магнитного поля.


Для того чтобы получить изображение определенного слоя тканей, градиенты поля вращают вокруг больного (подобно тому, как вращается рентгеновский излучатель при компьютерной томографии). Фактически осуществляется сканирование тела. Полученные сигналы преобразуются в цифровые и поступают в память компьютера. Характер МР-изображения определяется тремя факторами: плотностью протонов (то есть концентрацией ядер водорода), временем релаксации Т1 (спин-решетчатой) и временем релаксации Т2 (спин-спиновой).
При этом основной вклад в создание изображения вносит анализ времени релаксации, а не протонной плотности. Так, серое и белое вещество головного мозга отличаются по концентрации воды всего на 10%, в то время как продолжительность релаксации в них протонов разнится в 11/2 раза.


Существует ряд способов получения МР-томограмм. Их различие заключается в порядке и характере генерации радиочастотных импульсов, методах анализа МР-сигналов. Наибольшее распространение имеют два способа: спин-решетчатый и спин-эховый. При спин-решетчатом анализируют главным образом время релаксации T1. Различные ткани (серое и белое вещество головного мозга, спинномозговая жидкость, опухолевая ткань, хрящ, мышцы и т. д.) имеют в своем составе протоны с разным временем релаксации T1. С продолжительностью T1
связана величина МР-сигнала: чем короче T1, тем сильнее МР-сигнал и тем светлее выглядит данное место изображения на телемониторе. Жировая ткань на МР-томограммах белая, вслед за ней идут головной и спинной мозг, плотные внутренние органы, сосудистые стенки и мышцы. Воздух, кости и кальцификаты практически не дают МР-сигнала и поэтому отображаются черным цветом. В свою очередь, мозговая ткань также имеет неоднородное время Т1 — у белого вещества оно иное, чем у серого. T1 опухолевой ткани отличается от T1 одноименной
нормальной ткани. Указанные взаимоотношения времени релаксации T1 создают предпосылки для визуализации нормальных и измененных тканей на МР-томограммах.


При другом способе МР-томографии, названном спин-эховым, на пациента направляют серию радиочастотных сигналов, поворачивающих прецессирующие протоны на 90°. Вслед за прекращением импульсов регистрируют ответные МР-сигналы. Однако интенсивность ответного сигнала по-иному связана с продолжительностью Т2: чем короче Т2, тем слабее сигнал и, следовательно, ниже яркость свечения экрана телемонитора. Таким образом, итоговая картина МРТ по способу Т2 противоположна МРТ по способу T1 (как негатив позитиву). При
МРТ, как при рентгенологическом исследовании, можно применять искусственное
контрастирование тканей. С этой целью используют химические вещества, содержащие ядра с нечетным числом протонов и нейтронов, например соединения фтора, или же парамагнетики, которые изменяют время релаксации воды и тем самым усиливают контрастность изображения на МР-томограммах. МР-томография — исключительно ценный метод исследования. Он позволяет получать изображение тонких слоев тела в любом сечении — во фронтальной, сагиттальной, аксиальной и косых плоскостях. Можно реконструировать объемные изображения органов,
синхронизировать получение томограмм с зубцами электрокардиограммы. Исследование не обременительно для больного и не сопровождается никакими ощущениями и осложнениями. На МР-томограммах лучше, чем на компьютерных томограммах, отображаются мягкие ткани: мышцы, жировые прослойки, хрящи, сосуды. Можно получить изображение сосудов, не вводя в них контрастное вещество (МР-ангиография). Вследствие небольшого содержания воды в костной ткани последняя не создает экранирующего эффекта, как при рентгеновской компьютерной
томографии, то есть не мешает изображению, например, спинного мозга, межпозвонковых дисков и т. д. Конечно, ядра водорода содержатся не только в воде, но в костной ткани они фиксированы в очень больших молекулах и плотных структурах и не являются помехой при МР-томографии. Вместе с тем необходимо подчеркнуть, что препятствием для МР-интроскопии, связанной с воздействием сильного магнитного поля, является наличие у пациента металлических инородных тел в тканях (в том числе металлических клипс после хирургических
операций), чипов.


Обследование одной анатомической области методом МРТ включает выполнение нескольких так называемых импульсных последовательностей. Различные импульсные последовательности позволяют получить специфические характеристики тканей, оценить относительное содержание жидкости, жира, белковых структур или парамагнитных элементов (железо, медь, марганец и др.). Стандартные протоколы МРТ включают в себя Т1-взвешенные изображения (чувствительные к наличию жира или крови) и Т2-взвешенные изображения (чувствительные к отеку
и инфильтрации) в 2-3 плоскостях. Структуры, практически не содержащие протонов (кортикальная кость, кальцификаты, фиброзно-хрящевая ткань), а также артериальный кровоток имеют низкую интенсивность сигнала и на Т1-, и на Т2-взвешенных изображениях. Время проведения исследования обычно составляет от 20 до 40 минут в зависимости от анатомической области и клинической ситуации.


При исследованиях спинного мозга и межпозвонковых дисков в шейном и грудном отделах МРТ предпочтительнее, чем КТ, так как она позволяет получать сагиттальные срезы, не дает артефакты от костных структур и не требует введения контрастных средств. Магнитный резонанс – это физическое явление, основанное на свойствах некоторых атомных ядер при помещении их в магнитное поле поглощать энергию в радиочастотном (РЧ) диапазоне и излучать ее после прекращения воздействия РЧ-импульса. При этом напряженность постоянного
магнитного поля и частота радиочастотного магнитного поля должны строго соответствовать друг другу, что и называется ядерным магнитным резонансом: ядерным – поскольку взаимодействие происходит только с магнитными моментами атомных ядер, магнитным – так как эти моменты ориентированы постоянным магнитным полем, а изменение их ориентации вызывается радиочастотным магнитным полем, резонансом – поскольку параметры этих полей строго связаны между собой. Характер интенсивности сигнала в МРТ определяется в основном четырьмя
параметрами: протонной плотностью (количеством протонов в исследуемой ткани), временем спин-решетчатой релаксации (Т1), временем спин-спиновой релаксации (Т2), движением, или диффузией, исследуемых структур. Для МРТ разработаны различные импульсные последовательности, которые, в зависимости от цели, определяют вклад того или иного параметра в интенсивность изображения исследуемых структур для получения оптимального контраста между нормальными и измененными тканями. Для создания магнитного резонанса необходимо
постоянное, стабильное и однородное магнитное поле. В зависимости от напряженности магнитного поля все МР-томографы обычно классифицируются на сверхнизкие (менее 0,1 Тл), низкопольные (0,1-0,4 Тл), среднепольные (0,5 Тл), высокопольные (1-2 Тл), сверхвысокопольные (выше 2 Тл). Приборы с полем до 0,3 Тл обычно имеют резистивные или перманентные магниты, выше 0,3 Тл – сверхпроводящие. Магнитно-резонансная томография назначается в диагностически сложных случаях.


МРТ позвоночника


При проведении магнитно-резонансной томографии собаку укладывают на живот, в заднюю конечность устанавливают катетер для периферических вен. Пациенту в течение всего исследования вводится Пропофол в дозе, необходимой для обездвиживания животного. Мониторинг состояния осуществляется визуально по частоте дыхательных движений и по пульсу на бедренной артерии. При МРТ-исследовании видны нервные корешки, межпозвонковые диски и сосуды. На МРТ пульпозное ядро, имеющее меньшую гидрофильность вследствие дегенеративных
изменений, не дает МРТ-сигнала и хорошо прослеживается. Грыжа диска лучше всего определяется на Т2-взвешенных изображениях, так как высокий сигнал от цереброспинальной жидкости (ЦСЖ) в субарахноидальном пространстве подчеркивает границы грыжевого выпячивания. Т1-взвешенные изображения играют более важную роль в идентификации сдавления спинного мозга и корешков спинномозговых нервов в просвете межпозвонкового отверстия на фоне высокого сигнала от эпидурального жира. В случае протрузии диска на сагиттальных Т2-взвешенных
томограммах удается идентифицировать наружные отделы истонченного фиброзного кольца (зона гипоинтенсивного сигнала) и выбухание пульпозного ядра (зона более высокого сигнала). При грыже диска разрыв фиброзного кольца можно определить по типичному перерыву зоны гипоинтенсивного сигнала, окружающей выбухающее пульпозное ядро. Однако в целом ряде случаев сложно провести точную дифференцировку между протрузией диска и грыжей, так как низкий сигнал от фиброзного кольца может сливаться с гипоинтенсивным сигналом от
дорсальной продольной связки, не позволяя определять разрыв кольца диска. В наблюдениях с секвестрацией грыжевого содержимого на МРТ можно обнаружить отдельно расположенный фрагмент диска перед задней продольной связкой, позади нее или даже в эпидуральном пространстве на некотором расстоянии от межпозвонкового промежутка: ниже или выше последнего. Для получения более полной анатомо-топографической картины распространения грыжи диска в поперечном направлении обычно проводится сканирование в аксиальной проекции.
Это позволяет определять  дорсальное, дорсолатеральное или латеральное распространение грыжи диска и его отношение к межпозвонковому отверстию, а также распространение вещества диска вдоль тел позвонков.


Дегенеративные изменения позвонков


Дегенеративные изменения в межпозвонковых дисках индуцируют развитие сопутствующих дегенеративных изменений в прилежащих отделах тел позвонков. Это проявляется в изменении сигнала, демонстрируемого преимущественно на Т1- и Т2-взвешенных изображениях. В одних наблюдениях выявляется снижение сигнала на Т1- и Т2-взвешенных МРТ, а в других, наоборот, – повышение исходящего сигнала.


В первом случае зону гипоинтенсивности в субкортикальных отделах тел позвонков объясняют развитием склеротического процесса костной ткани и исчезновением жирового компонента костного мозга, а во втором - превалированием процессов жирового перерождения костного мозга над склерозом.


Стеноз позвоночного канала.


Термин "стеноз позвоночного канала" используется для определения участка сужения канала по сравнению с его размерами, наблюдаемыми в нормальных условиях. Этот процесс развивается обычно постепенно как результат параллельно нарастающих дегенеративных изменений в межпозвонковых дисках и межпозвонковых суставах с последующим развитием остеоартрита и остеофитов. Чаще всего стеноз развивается на поясничном и шейном уровнях. На Т1-взвешенных МРТ в сагиттальной и аксиальной проекциях можно определить сдавление
дурального мешка и исчезновение эпидуральной жировой клетчатки на уровне сужения. На томограммах можно выявить также утолщение желтой связки и дегенеративные изменения межсуставных поверхностей межпозвонковых суставов с наличием костных остеофитов. Развитие гипертрофии желтой связки обусловлено ее хронической травматизацией. Степень стеноза канала лучше всего оценивать на Т2-взвешенных томограммах в сагиттальной плоскости, что связано с лучшей визуализацией в этом режиме ЦСЖ. Аксиальные томограммы полезны в оценке
величины сужения канала и межпозвонковых отверстий. Однако более полную информацию о костных изменениях и состоянии межпозвонковых суставов дает компьютерная томография.


 


  Яндекс.Метрика